Publications
Preprints
-
TAPNext: Tracking Any Point (TAP) as Next Token Prediction
Artem Zholus, Carl Doersch, Yi Yang, Skanda Koppula, Viorica Patraucean, Xu Owen He, Ignacio Rocco, Mehdi S. M. Sajjadi, Sarath Chandar, and Ross Goroshin
In ArXiv, 2025.
#Other
[website], [arXiv], [code], [YouTube] -
TRecViT: A Recurrent Video Transformer
Viorica Pătrăucean, Xu Owen He, Joseph Heyward, Chuhan Zhang, Mehdi S. M. Sajjadi, George-Cristian Muraru, Artem Zholus, Mahdi Karami, Ross Goroshin, Yutian Chen, Simon Osindero, João Carreira, and Razvan Pascanu
In ArXiv, 2024.
#DL
[arXiv] -
Unraveling the Complexity of Memory in RL Agents: An Approach for Classification and Evaluation
Egor Cherepanov, Nikita Kachaev, Artem Zholus, Alexey K. Kovalev, and Aleksandr I. Panov
In ArXiv, 2024.
#RL
[arXiv] -
Protein Language Models: Is Scaling Necessary?
Quentin Fournier, Robert M. Vernon, Almer van der Sloot, Benjamin Schulz, Sarath Chandar, and Christopher James Langmead
In bioRxiv, 2024.
#DL, #Other
[bioRxiv], [code] -
Interpretability in Action: Exploratory Analysis of VPT, a Minecraft Agent
Karolis Jucys, George Adamopoulos, Mehrab Hamidi, Stephanie Milani, Mohammad Reza Samsami, Artem Zholus, Sonia Joseph, Blake Richards, Irina Rish, and Özgür Şimşek
Mechanistic Interpretability Workshop, ICML, 2024.
#Other
[arXiv] -
Interpretability Needs a New Paradigm
Andreas Madsen, Himabindu Lakkaraju, Siva Reddy, and Sarath Chandar
In ArXiv, 2024.
#NLP, #DL, #Other
[arXiv] -
Segmentation of Multiple Sclerosis Lesions across Hospitals: Learn Continually or Train from Scratch?
Naga Karthik Enamundram, Anne Kerbrat, Pierre Labauge, Tobias Granberg, Jason Talbott, Daniel S. Reich, Massimo Filippi, Rohit Bakshi, Virginie Callot, Sarath Chandar, and Julien Cohen-Adad
In ArXiv, 2022.
[Medical Imaging meets NeurIPS Workshop, 2022]
#DL
[arXiv], [code] -
Feature diversity in self-supervised learning
Pranshu Malviya* and Arjun Vaithilingam Sudhakar*
Conference on Lifelong Learning Agents (CoLLAs) Workshop Track, 2022.
#DL
[arXiv] -
An Introduction to Lifelong Supervised Learning
Shagun Sodhani, Mojtaba Farmazi, Sanket Vaibhav Mehta, Pranshu Malviya, Mohamed Abdelsalam, Janarthanan Rajendran, and Sarath Chandar
In ArXiv, 2022.
#DL
[arXiv] -
Maximum Reward Formulation In Reinforcement Learning
Sai Krishna Gottipati, Yashaswi Pathak, Rohan Nuttall, Raviteja Chunduru, Ahmed Touati, Sriram Ganapathi Subramanian, Matthew E Taylor, and Sarath Chandar
In arXiv, 2020.
#RL
[arXiv]