Publications
Prépublications
-
TRecViT: A Recurrent Video Transformer
Viorica Pătrăucean, Xu Owen He, Joseph Heyward, Chuhan Zhang, Mehdi S. M. Sajjadi, George-Cristian Muraru, Artem Zholus, Mahdi Karami, Ross Goroshin, Yutian Chen, Simon Osindero, João Carreira et Razvan Pascanu
In ArXiv, 2024.
#DL
[arXiv] -
Unraveling the Complexity of Memory in RL Agents: An Approach for Classification and Evaluation
Egor Cherepanov, Nikita Kachaev, Artem Zholus, Alexey K. Kovalev et Aleksandr I. Panov
In ArXiv, 2024.
#RL
[arXiv] -
ChartGemma: Visual Instruction-tuning for Chart Reasoning in the Wild
Ahmed Masry*, Megh Thakkar*, Aayush Bajaj, Aaryaman Kartha, Enamul Hoque et Shafiq Joty
In arXiv, 2024.
#NLP
[arXiv], [code] -
Protein Language Models: Is Scaling Necessary?
Quentin Fournier, Robert M. Vernon, Almer van der Sloot, Benjamin Schulz, Sarath Chandar et Christopher James Langmead
In bioRxiv, 2024.
#DL, #Other
[bioRxiv], [code] -
Exploring the Plasticity of Neural Network for NLP Tasks in Continual Learning
Maryam Hashemzadeh, Pranshu Malviya*, Darshan Patil* et Sarath Chandar
Conference on Lifelong Learning Agents (CoLLAs) Workshop Track, 2024.
#DL, #NLP
-
Interpretability in Action: Exploratory Analysis of VPT, a Minecraft Agent
Karolis Jucys, George Adamopoulos, Mehrab Hamidi, Stephanie Milani, Mohammad Reza Samsami, Artem Zholus, Sonia Joseph, Blake Richards, Irina Rish et Özgür Şimşek
In ArXiv, 2024.
#Other
[arXiv] -
IDAT: A Multi-Modal Dataset and Toolkit for Building and Evaluating Interactive Task-Solving Agents
Shrestha Mohanty, Negar Arabzadeh, Andrea Tupini, Yuxuan Sun, Alexey Skrynnik, Artem Zholus, Marc-Alexandre Côté et Julia Kiseleva
In ArXiv, 2024.
#NLP
[arXiv] -
Predicting the Impact of Model Expansion through the Minima Manifold: A Loss Landscape Perspective
Pranshu Malviya, Jerry Huang, Quentin Fournier et Sarath Chandar
In ArXiv, 2024.
#DL
[arXiv] -
Interpretability Needs a New Paradigm
Andreas Madsen, Himabindu Lakkaraju, Siva Reddy et Sarath Chandar
In ArXiv, 2024.
#NLP, #DL, #Other
[arXiv] -
Segmentation of Multiple Sclerosis Lesions across Hospitals: Learn Continually or Train from Scratch?
Naga Karthik Enamundram, Anne Kerbrat, Pierre Labauge, Tobias Granberg, Jason Talbott, Daniel S. Reich, Massimo Filippi, Rohit Bakshi, Virginie Callot, Sarath Chandar et Julien Cohen-Adad
In ArXiv, 2022.
#DL
[arXiv], [code] -
Feature diversity in self-supervised learning
Pranshu Malviya* et Arjun Vaithilingam Sudhakar*
Conference on Lifelong Learning Agents (CoLLAs) Workshop Track, 2022.
#DL
[arXiv] -
Sharpness-Aware Training for Accurate Inference on Noisy DNN Accelerators
Gonçalo Mordido, Sarath Chandar et François Leduc-Primeau
Conference on Lifelong Learning Agents (CoLLAs) Workshop Track, 2022.
[Edge Intelligence Workshop (EIW), 2022]
#DL
[arXiv] -
An Introduction to Lifelong Supervised Learning
Shagun Sodhani, Mojtaba Farmazi, Sanket Vaibhav Mehta, Pranshu Malviya, Mohamed Abdelsalam, Janarthanan Rajendran et Sarath Chandar
In ArXiv, 2022.
#DL
[arXiv] -
Maximum Reward Formulation In Reinforcement Learning
Sai Krishna Gottipati, Yashaswi Pathak, Rohan Nuttall, Raviteja Chunduru, Ahmed Touati, Sriram Ganapathi Subramanian, Matthew E Taylor et Sarath Chandar
In arXiv, 2020.
#RL
[arXiv]