Publications
Prépublications
-
The Markovian Thinker
Milad Aghajohari*, Kamran Chitsaz*, Amirhossein Kazemnejad*, Sarath Chandar, Alessandro Sordoni, Aaron Courville et Siva Reddy
In ArXiv, 2025.
#NLP, #RL
[arXiv] -
Just-in-time Episodic Feedback Hinter: Leveraging Offline Knowledge to Improve LLM Agents Adaptation
Hadi Nekoei, Aman Jaiswal, Patrice Bechard, Oleh Shliazhko, Orlando Marquez Ayala, Mathieu Reymond, Massimo Caccia, Alexandre Drouin, Sarath Chandar et Alexandre Lacoste
In ArXiv, 2025.
#NLP, #RL
[arXiv] -
GRPO-λ: Credit Assignment improves LLM Reasoning
Prasanna Parthasarathi*, Mathieu Reymond*, Boxing Chen, Yufei Cui et Sarath Chandar
In ArXiv, 2025.
#RL, #NLP
[arXiv] -
CrystalGym: A New Benchmark for Materials Discovery Using Reinforcement Learning
Prashant Govindarajan, Mathieu Reymond, Antoine Clavaud, Mariano Phielipp, Santiago Miret et Sarath Chandar
In ArXiv, 2025.
#RL, #Other
[arXiv], [code] -
NovoMolGen: Rethinking Molecular Language Model Pretraining
Kamran Chitsaz*, Roshan Balaji*, Quentin Fournier, Nirav Pravinbhai Bhatt et Sarath Chandar
In ArXiv, 2025.
#NLP, #Other
[arXiv], [huggingface], [code] -
CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design
Prashant Govindarajan*, Davide Baldelli*, Jay Pathak, Quentin Fournier et Sarath Chandar
In ArXiv, 2025.
#NLP
[arXiv], [code], [huggingface] -
Optimizers Qualitatively Alter Solutions And We Should Leverage This
Razvan Pascanu, Clare Lyle, Ionut-Vlad Modoranu, Naima Elosegui Borras, Dan Alistarh, Petar Velickovic, Sarath Chandar, Soham De et James Martens
In ArXiv, 2025.
#DL
[arXiv] -
Did I Faithfully Say What I Thought? Bridging the Gap Between Neural Activity and Self-Explanations in Large Language Models
Milan Bhan, Jean-Noel Vittaut, Nicolas Chesneau, Sarath Chandar et Marie-Jeanne Lesot
In ArXiv, 2025.
#NLP
[arXiv] -
V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning
Mido Assran*, Adrien Bardes*, David Fan*, Quentin Garrido*, Russell Howes*, Mojtaba Komeili*, Matthew Muckley*, Ammar Rizvi*, Claire Roberts*, Koustuv Sinha*, Artem Zholus*, Sergio Arnaud*, Abha Gejji*, Ada Martin*, Francois Robert Hogan*, Daniel Dugas*, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier*, Yann LeCun*, Michael Rabbat* et Nicolas Ballas*
Technical Report, 2025.
#DL
[website], [arXiv], [code], [huggingface], [blogpost] -
Structure-Aligned Protein Language Model
Can Chen, David Heurtel-Depeiges, Robert M. Vernon, Christopher James Langmead, Yoshua Bengio et Quentin Fournier
In ArXiv, 2025.
#NLP, #Other
[arXiv], [huggingface] -
Monitoring morphometric drift in lifelong learning segmentation of the spinal cord
Enamundram Naga Karthik, Sandrine Bédard, Jan Valošek, Christoph S. Aigner, Elise Bannier, Josef Bednařík, Virginie Callot, Anna Combes, Armin Curt, Gergely David, Falk Eippert, Lynn Farner, Michael G Fehlings, Patrick Freund, Tobias Granberg, Cristina Granziera, RHSCIR Network Imaging Group, Ulrike Horn, Tomáš Horák, Suzanne Humphreys, Markus Hupp, Anne Kerbrat, Nawal Kinany, Shannon Kolind, Petr Kudlička, Anna Lebret, Lisa Eunyoung Lee, Caterina Mainero, Allan R. Martin, Megan McGrath, Govind Nair, Kristin P. O'Grady, Jiwon Oh, Russell Ouellette, Nikolai Pfender, Dario Pfyffer, Pierre-François Pradat, Alexandre Prat, Emanuele Pravatà, Daniel S. Reich, Ilaria Ricchi, Naama Rotem-Kohavi, Simon Schading-Sassenhausen, Maryam Seif, Andrew Smith, Seth A Smith, Grace Sweeney, Roger Tam, Anthony Traboulsee, Constantina Andrada Treaba, Charidimos Tsagkas, Zachary Vavasour, Dimitri Van De Ville, Kenneth Arnold Weber II, Sarath Chandar et Julien Cohen-Adad
In ArXiv, 2025.
#NLP
[arXiv] -
Torque-Aware Momentum
Pranshu Malviya, Gonçalo Mordido, Aristide Baratin, Reza Babanezhad Harikandeh, Gintare Karolina Dziugaite, Razvan Pascanu et Sarath Chandar
In ArXiv, 2024.
#DL
[arXiv] -
TRecViT: A Recurrent Video Transformer
Viorica Pătrăucean, Xu Owen He, Joseph Heyward, Chuhan Zhang, Mehdi S. M. Sajjadi, George-Cristian Muraru, Artem Zholus, Mahdi Karami, Ross Goroshin, Yutian Chen, Simon Osindero, João Carreira et Razvan Pascanu
In ArXiv, 2024.
#DL
[arXiv], [code] -
Too Big to Fool: Resisting Deception in Language Models
Mohammad Reza Samsami, Mats Leon Richter, Juan Rodriguez, Megh Thakkar, Sarath Chandar et Maxime Gasse
In ArXiv, 2024.
#NLP
[arXiv] -
Interpretability Needs a New Paradigm
Andreas Madsen, Himabindu Lakkaraju, Siva Reddy et Sarath Chandar
In ArXiv, 2024.
#NLP, #DL
[arXiv] -
Protein Language Models: Is Scaling Necessary?
Quentin Fournier, Robert M. Vernon, Almer van der Sloot, Benjamin Schulz, Sarath Chandar et Christopher James Langmead
In bioRxiv, 2024.
#DL, #Other
[bioRxiv], [code], [huggingface] -
Interpretability in Action: Exploratory Analysis of VPT, a Minecraft Agent
Karolis Jucys, George Adamopoulos, Mehrab Hamidi, Stephanie Milani, Mohammad Reza Samsami, Artem Zholus, Sonia Joseph, Blake Richards, Irina Rish et Özgür Şimşek
Workshop on Mechanistic Interpretability @ ICML, 2024.
#Other
[arXiv] -
Segmentation of Multiple Sclerosis Lesions across Hospitals: Learn Continually or Train from Scratch?
Naga Karthik Enamundram, Anne Kerbrat, Pierre Labauge, Tobias Granberg, Jason Talbott, Daniel S. Reich, Massimo Filippi, Rohit Bakshi, Virginie Callot, Sarath Chandar et Julien Cohen-Adad
In ArXiv, 2022.
[Medical Imaging meets NeurIPS, 2022]
#DL, #Other
[arXiv], [code] -
Feature diversity in self-supervised learning
Pranshu Malviya* et Arjun Vaithilingam Sudhakar*
Conference on Lifelong Learning Agents (CoLLAs) Workshop Track, 2022.
#DL
[arXiv] -
An Introduction to Lifelong Supervised Learning
Shagun Sodhani, Mojtaba Faramarzi, Sanket Vaibhav Mehta, Pranshu Malviya, Mohamed Abdelsalam, Janarthanan Rajendran et Sarath Chandar
In ArXiv, 2022.
#DL
[arXiv] -
Maximum Reward Formulation In Reinforcement Learning
Sai Krishna Gottipati, Yashaswi Pathak, Rohan Nuttall, Raviteja Chunduru, Ahmed Touati, Sriram Ganapathi Subramanian, Matthew E Taylor et Sarath Chandar
In arXiv, 2020.
#RL
[arXiv]