Activité

  • Stagiaire: jan. 2024 - maintenant
  • Étudiant à la maitrise: jan. 2021 - déc. 2023

Thèse de maitrise

  1. Towards Adaptive Deep Model-Based Reinforcement Learning
    par , avec Sarath Chandar comme superviseur.
    Université de Montréal ⸺ novembre 2023.
    [thesis]

Articles de conférence et de revue

2024

  1. Partial Models for Building Adaptive Model-Based Reinforcement Learning Agents
    Safa Alver, et Doina Precup
    Conference on Lifelong Learning Agents (CoLLAs), 2024.
    #RL
    [arXiv]

2023

  1. Replay Buffer with Local Forgetting for Adapting to Local Environment Changes in Deep Model-Based Reinforcement Learning
    , , Ida Momennejad, Harm van Seijen et
    Conference on Lifelong Learning Agents (CoLLAs), 2023.
    [Deep Reinforcement Learning Workshop, NeurIPS, 2022]
    #RL
    [pmlr], [arXiv]

2022

  1. Towards Evaluating Adaptivity of Model-Based Reinforcement Learning Methods
    , , , Ida Momennejad, et Harm van Seijen
    International Conference on Machine Learning (ICML), 2022.
    #RL
    [pmlr], [arXiv], [code]