Lecture notes are available here.

Self-assessment questions for each lecture are available here.

Scribbles for each lecture are available here.

Lec Date Topics Lecture Material Video Lecture Reference Readings
1 30 Aug Intro to ML, Linear Regression Chapter-1 video1 video2 video3 Bishop section 1.1 ,
HTF section 2.3
Computing Machinery and Intelligence by Alan Turing,
Probability Review,
Linear Algebra Review
2 13 Sep Linear Regression, Overfitting, ML Pipeline, Classification, k-NN, More on Regression,Gradient Descent Chapter-1, Chapter-2 video1 video2 video3 Bishop section 1.1, 3.1, 3.1.4,
HTF section 2.3, 2.4, 2.5 ,3.4.1, 3.4.2
 
3 20 Sep Gradient Descent, Regularization, Decision theory, Empirical Risk Minimization Chapter-3 Chapter-4 video1 video2 video3 Bishop section 3.1, 3.1.4
HTF section 3.4.1, 3.4.2, 2.4, 2.5
 
4 27 Sep Bias-Variance Tradeoff, linear classification Chapter-4 Chapter-5 video1 video2 video3 Bishop: Chapter 3 section 3.2
HTF: Chapter 2:section 2.9 and Chapter 10
Linear Algebra review (7.1) in this pdf.
Lagrange Multiplier (Appendix E in Bishop)
5 04 Oct GLM, GDA, Naive Bayes Chapter-6 video1 video2 video3 HTF:Chapter 4 and Chapter 6.6 Intro to convex optimization (page 91 to 102 in this book)
  11 Oct —-Break—-        
6 18 Oct Logistic Regression, Newton-Raphson method, Evaluation Metrics, Perceptron Chapter-7, Chapter-6, Chapter-8 video1 video2 video3 Bishop: Chapter 5;section 1 and section2 Generative and discriminative classifiers by Tom Mitchell.
7 25 Oct Max-margin Classifiers, SVMs Chapter-8 video1 video2 video3 Bishop: Chapter 7 section 1 The Saga of Highleyman’s Data by Moritz Hardt and Ben Recht.
8 01 Nov Decision trees, Ensembles: Bagging, Random Forests, Stacking Chapter-9, Chapter-10 video1 video2 video3 TSKK section 3.3
Mitchell Chapter 3
Bishop Chapter 14
stacking_paper
A Few Useful Things to Know about Machine Learning by Pedro Domingos
9 08 Nov Boosting, Neural Nets, Backpropagation Chapter-11 video1 video2 video3 Bishop Chapter 14
Rojas Chapter 7
 
10 15 Nov Backpropagation, Deep Neural Networks, Convolutional Networks Chapter-11 Chapter-13 video1 video2 video3 Rojas Chapter 7
ConvNets
 
11 22 Nov Optimization, Dimensionality Reduction, PCA, LDA Chapter-12 Chapter-13 Chapte-14 video1 video2 video3 Optimization-1 Optimization-2  
12 29 Nov Bayesian learning, MLE, MAP, Bayesian Linear Regression Chapter-15 video1 video2 video3 Bishop Chapter 3.3,
Parameter Estimation
 
13 07 Dec Kernel Methods, Gaussian Process, Frontiers, What Next? Chapter-16 Chapter-17 video1 video2 video3 Bishop: Chapter 6  

Tutorials

Lec Date Time Topic Lecture Materials Video Lecture
1 01 Sep 4 pm to 5 pm Probability Probability Material video
2 03 Sep 9 am to 10 am Linear Algebra Linear Algebra Material video
3 08 sep 4 pm to 5:30 pm Python, NumPy, Matplotlib Python, NumPy, Matplotlib Material video
4 22 Oct 9 am to 10:30 am scikit-learn scikit-learn video
5 27 Oct 4 pm to 5:30 pm Basic Pytorch Pytorch notebook , slides video
6 5 Nov 9 am to 10:30 am Advanced PyTorch Pytorch notebook , slides video
7 17 Nov 4 pm to 5:00 pm How to write good and reproducible ML code? - video

Note: There might be changes in the topics/plan in the future.